I was recently awarded the National Science Centre (NCN) SONATA BIS 13 grant "Properties of low-dimensional quantum systems with charge, spin, and orbital degrees of freedom". I will have openings for two PhD students (4 years scholarship; starting in autumn 2025) and one PostDoc (2 years contract). Write me an e-mail (jacek.herbrych [at] pwr.edu.pl) if you are interested.
◦ info
My appointments & education
⚬ since 2019 Wrocław University of Science and Technology (Wrocław, Poland)
⚬ 2022 Habilitation at University of Warsaw (Warsaw, Poland)
⚬ 2016 - 2019 Oak Ridge National Laboratory (Oak Ridge, USA)
⚬ 2016 - 2019 University of Tennessee (Knoxville, USA)
⚬ 2013 - 2016 Crete Center for Quantum Complexity and Nanotechnology (Heraklion, Greece)
⚬ 2013 - 2016 University of Crete (Heraklion, Greece)
⚬ 2010 - 2013 Jožef Stefan Institute, Ljubljana (Ljubljana, Slovenia)
⚬ 2010 - 2013 PhD studies at University of Ljubljana (Ljubljana, Slovenia)
⚬ 2005 - 2010 MSc studies at University of Łódź (Łódź, Poland)
Links
⚬ Full résumé (pdf)
⚬ arXiv publication list
⚬ Google Scholar profile
⚬ Data repository
Group members & student projects
Me :)
Diploma students
⚬ Dawid Dworzański - Graph theory description of nearly-fragmented Hilbert space
⚬ Jakub Prokopczyk - Spin dynamics of doped two-orbital Hubbard model
⚬ Błażej Zdobylak - Particle expansion in tight-binding quantum chaotic system
Student project
⚬ Jagoda Maląg - Ergodicity of quantum circuits
⚬ Jagoda Zawisz - Effective spin exchanges in multi-orbital Hubbard model
Past
PhD
⚬ 2023 Maksymilian Środa Electronic and magnetic properties of low-dimensional strongly correlated multiorbital systems
Master
⚬ 2021 Rafał Świętek Exact diagonalization studies of generalized Kondo-Heisenberg model
⚬ 2021 Łukasz Iwanek Many-body mobility edge in random-exchange systems
Diploma
⚬ 2024 Kacper Drabikowski Correlation lengths within orbital-selective Mott phase
⚬ 2024 Sami Elgalal Impact of charge fluctuations on the Haldane phase
⚬ 2023 Agnieszka Jażdżewska Flocking: properties of inertia spin model
⚬ 2021 Bartosz Grygielski Spin textures induced by Majorana fermions
⚬ 2019 Łukasz Iwanek Many-body localization of the domain walls
◦ teaching
Bachelor courses
⚬ Quantum Mechanics I & II
⚬ Quantum many‐body theory
Master courses
⚬ Matrix product state representation of quantum mechanics - monographic lecture
⚬ Numerical methods for quantum systems
◦ research interest
⚬ Strongly correlated multi-orbital systems
Past experience in strongly correlated quantum systems, especially Cu-based materials, showed that the high-temperature superconductivity is closely connected to a bad-metal state and a nearby antiferromagnetic order. As such, there has been a considerable effort devoted to the understanding of the electron correlation effects and the associated magnetism. On the other hand, the multi-orbital system properties, relevant for Fe-based materials, are much less explored. Iron-based superconductors display various phases originating in the multi-orbital nature of iron itself, and as a consequence, in the competition between electronic, orbital, and spin degrees of freedom. Prominent among these novel effects is the orbital-selective Mott phase (OSMP), where electronic correlations cause a unique mixture of metallic and insulating behaviour.
Our group investigates (primarily using numerical techniques) static and dynamic properties of multi-orbital systems with the emphasis on its magnetic properties and the role of Hund’s coupling. One can expect that the competition of the latter and Coulomb interaction can lead to a novel type of frustrated magnetism. Furthermore, a nontrivial magnetic order within OSMP could lead to nontrivial topological effects.
⚬ Transport properties in low-dimensional quantum systems
Transport in many-body systems of interacting fermions established several novel - entirely quantum - aspects going well beyond usual weak-scattering or Boltzmann-type approaches to transport. Such behaviour is especially pronounced in the system with reduced dimensionality (e.g., in 1D chains and quasi-1D ladders). Furthermore, due to the possibility of accurate treatment on the latter, the low-dimensional systems have become a playground for condensed-matter physicists to test various theoretical scenarios. A prominent fundamental model and an experimentally relevant example of such a phenomenon is the one-dimensional antiferromagnetic Heisenberg model describing the low-dimensional quantum magnets even at high temperatures.
We are interested in various transport properties of the low-dimensional quantum system. Our study focuses, among others, on the effects of the integrability of the model, many-body localization, the physics of random interaction exchange, non-equilibrium properties, and linear response answer of the systems to experimentally relevant perturbations.
⚬ Flocking of multi-agent dynamical systems
I recently got interested in the classical multi-agent dynamical systems relevant to the collective decision-making in the biological systems, e.g., the transfer of long-range information in birds' flocks. I'm interested in the extension of the so-called inertia spin model to leaderless flocking.
◦ funding
Properties of low-dimensional quantum systems with charge, spin, and orbital degrees of freedom
SONATA BIS 13 2023/50/E/ST3/00033
2024-2029, Wrocław University of Science and Technology, Poland
click to see published works
(1) arXiv: cond-mat/2411.03771◉ see the publications list for more info
Magnetic properties of strongly correlated multi-orbital systems
OPUS 18 2019/35/B/ST3/01207
2020-2023, Wrocław University of Science and Technology, Poland
click to see published works
(1) Phys. Rev. B 104, 045128 (2021)(2) Phys. Rev. B 104, 235135 (2021)
(3) Nat. Commun. 12, 2955 (2021)
(4) Phys. Rev. B 105, 075119 (2022)
(5) Phys. Rev. B 107, 045134 (2023)
(6) Phys. Rev. B 108, L081102 (2023)
(7) Nat. Commun. 14, 8524 (2023)
◉ see the publications list for more info
Polish Returns PPN/PPO/2018/1/00035
2019-2022, Wrocław University of Science and Technology, Poland
click to see published works
(1) Phys. Rev. Lett. 123, 027203 (2019)(2) Phys. Rev. B 101, 035134 (2020)
(3) Proc. Natl. Acad. Sci. USA 117, 16226 (2020)
(4) Phys. Rev. Research 2, 023024 (2020)
(5) Phys. Rev. B 101, 094431 (2020)
(6) Phys. Rev. B 102, 035149 (2020)
(7) Phys. Rev. B 102, 115134 (2020)
(8) Phys. Rev. B 102, 161111(R) (2020)
(9) Nat. Commun. 12, 2955 (2021)
(10) Phys. Rev. B 103, 235115 (2021)
(11) Phys. Rev. B 103, L241107 (2021)
(12) Phys. Rev. B 104, 045128 (2021)
(13) Phys. Rev. B 104, 115163 (2021)
(14) Phys. Rev. B 104, 235135 (2021)
(15) Phys. Rev. B 105, 075119 (2022)
(16) Phys. Rev. B 105, L081105 (2022)
(17) Phys. Rev. B 105, 134420 (2022)
(18) SciPost Phys. 13, 013 (2022)
(19) Phys. Rev. B 106, 245104 (2022)
(20) Phys. Rev. B 107, 045134 (2023)
(21) Phys. Rev. B 108, L081102 (2023)
◉ see the publications list for more info
I'm using the high performance computing resources provided by WCSS center.
Since 2020, Wrocław University of Science and Technology, Poland
Thanks to the collaboration with Prof. Dr. Elbio Dagotto, I'm using the high performance computing resources provided by ISAAC Legacy and ISAAC Next Generation clusters of UTK.
Since 2020, University of Tennessee, Knoxville, USA
◦ publications
◉ publications supported by NCN SONATA BIS 13 2023/50/E/ST3/00033 grant
◉ publications supported by NCN OPUS 18 2019/35/B/ST3/01207 grant
◉ publications supported by NAWA Polish Returns PPN/PPO/2018/1/00035 grant
(-) ◉
Evidence for valence-bond pairing in a low-dimensional two-orbital system
M. Mierzejewski, E. Dagotto, and J. Herbrych
arXiv: cond-mat/2411.03771
(54) Luther-Emery liquid and dominant singlet superconductivity in the two-orbital Hubbard chain
P. Laurell, J. Herbrych, G. Alvarez, and E. Dagotto
Phys. Rev. B 110, 064515 (2024)
& arXiv: cond-mat/2311.13440
(53) Lindblad dynamics from spatio-temporal correlation functions in nonintegrable spin-1/2 chains with different boundary conditions
M. Kraft, J. Richter, F. Jin, S. Nandy, Zala Lenarčič, J. Herbrych, K. Michielsen, H. De Raedt, J. Gemmer, and R. Steinigeweg
Phys. Rev. Res. 6, 023251 (2024)
& arXiv: cond-mat/2402.18177
(52) Long-living prethermalization in nearly integrable spin ladders
J. Pawłowski, M. Panfil, J. Herbrych, and M. Mierzejewski
Phys. Rev. B 109, L161109 (2024)
& arXiv: cond-mat/2312.11975
(51) Emergent dipole moment conservation and subdiffusion in tilted chains
S. Nandy, J. Herbrych, Z. Lenarčič, A. Głódkowski, P. Prelovšek, and M. Mierzejewski
Phys. Rev. B 109, 115120 (2024)
& arXiv: cond-mat/2310.01862
(50) ◉
Transition to the Haldane phase driven by electron-electron correlations
A. Jażdżewska, M. Mierzejewski, M. Środa, A. Nocera, G. Alvarez, E. Dagotto, and J. Herbrych
Nat. Commun. 14, 8524 (2023)
& arXiv: cond-mat/2304.11154
(49) The spin-1/2 XXZ chain coupled to two Lindblad baths: Constructing nonequilibrium steady states from equilibrium correlation functions
T. Heitmann, J. Richter, F. Jin, S. Nandy, Z. Lenarčič, J. Herbrych, K. Michielsen, H. De Raedt, J. Gemmer, and R. Steinigeweg
Phys. Rev. B 108, L201119 (2023)
& arXiv: cond-mat/2303.00430
(48) Spatially-anisotropic S=1 square-lattice antiferromagnet with single-ion anisotropy realized with a Ni(II) pyrazine-n,n'-dioxide (pyzdo) coordination polymer
J. L. Manson, D. M. Pajerowski, J. M. Donovan, B. Twamley, P. A. Goddard, R. Johnson, J. Bendix, J. Singleton, T. Lancaster, S. J. Blundell, J. Herbrych, P. J. Baker, A. J. Steele, F. L. Pratt, I. Franke-Chaudet, R. D. McDonald, A. Plonczak, and P. Manuel
Phys. Rev. B 108, 094425 (2023)
(47) Spin diffusion in perturbed isotropic Heisenberg spin chain
S. Nandy, Z. Lenarčič, E. Ilievski, M. Mierzejewski, J. Herbrych, P. Prelovšek
Phys. Rev. B 108, L081115 (2023)
& arXiv: cond-mat/2211.17181
(46) Real-time broadening of bath-induced density profiles from closed-system correlation functions
T. Heitmann, J. Richter, J. Herbrych, J. Gemmer, and R. Steinigeweg
Phys. Rev. E 108, 024102 (2023)
& arXiv: cond-mat/2210.10528
(45) ◉◉
Hund bands in spectra of multiorbital systems
M. Środa, J. Mravlje, G. Alvarez, E. Dagotto, and J. Herbrych
Phys. Rev. B 108, L081102 (2023)
& arXiv: cond-mat/2210.11209
(44) Slow diffusion and Thouless localization criterion in modulated spin chains
M. Mierzejewski, J. Herbrych, P. Prelovšek
Phys. Rev. B 108, 035106 (2023)
& arXiv: cond-mat/2302.03325
(43) ◉◉
Quasiballistic transport in long-range anisotropic Heisenberg model
M. Mierzejewski, J. Wronowicz, J. Pawłowski, and J. Herbrych
Phys. Rev. B 107, 045134 (2023)
& arXiv: cond-mat/2206.05960
(42) ◉
From dissipationless to normal diffusion in easy-axis Heisenberg spin chain
P. Prelovšek, S. Nandy, Z. Lenarčič, M. Mierzejewski, and J. Herbrych
Phys. Rev. B 106, 245104 (2022)
& arXiv: cond-mat/2205.11891
(41) ◉
Multiple relaxation times in perturbed XXZ chain
M. Mierzejewski, J. Pawłowski, P. Prelovšek, and J. Herbrych
SciPost Phys. 13, 013 (2022)
& arXiv: cond-mat/2112.08158
(40) ◉
High-pressure inelastic neutron scattering study of the S=1 spin chain [Ni(HF2)(3-Clpyridine)4]BF4
D. M. Pajerowski, A. P. Podlesnyak, J. Herbrych, and J. Manson
Phys. Rev. B 105, 134420 (2022)
& arXiv: cond-mat/2206.06249
(39) ◉
Relaxation at different length-scales in models of many-body localization
J. Herbrych, M. Mierzejewski, and P. Prelovšek
Phys. Rev. B 105, L081105 (2022)
& arXiv: cond-mat/2110.15635
(38) ◉◉
Prediction of orbital selective Mott phases and block magnetic states in the quasi-one-dimensional iron chain Ce2O2FeSe2 under hole and electron doping
L.-F. Lin, Y. Zhang, G. Alvarez, J. Herbrych, A. Moreo, and E. Dagotto
Phys. Rev. B 105, 075119 (2022)
& arXiv: cond-mat/2112.04049
(37) ◉◉
Magnetization dynamics fingerprints of an excitonic condensate t42gmagnet
N. Kaushal, J. Herbrych, G. Alvarez, and E. Dagotto
Phys. Rev. B 104, 235135 (2021)
& arXiv: cond-mat/2110.11828
(36) ◉
Coexistence of diffusive and ballistic transport in integrable quantum lattice models
P. Prelovšek, M. Mierzejewski, and J. Herbrych
Phys. Rev. B 104, 115163 (2021)
& arXiv: cond-mat/2107.02454
(35) ◉◉
Quantum magnetism of iron-based ladders: blocks, spirals, and spin flux
M. Środa, E. Dagotto, and J. Herbrych
Phys. Rev. B 104, 045128 (2021)
& arXiv: cond-mat/2105.04391
(34) ◉
Diffusion in the Anderson model in higher dimensions
P. Prelovšek and J. Herbrych
Phys. Rev. B 103, L241107 (2021)
& arXiv: cond-mat/2104.07801
(33) ◉
Ballistic transport in integrable lattice models with degenerate spectra
M. Mierzejewski, J. Herbrych, and P. Prelovšek
Phys. Rev. B 103, 235115 (2021)
& arXiv: cond-mat/2102.07467
(32) ◉◉
Interaction-induced topological phase transition and Majorana edge states in low-dimensional orbital-selective Mott insulators
J. Herbrych, M. Środa, G. Alvarez, M. Mierzejewski, and E. Dagotto
Nat. Commun. 12, 2955 (2021)
& arXiv: cond-mat/2011.05646
(31) ◉
Resistivity and its fluctuations in disordered many-body systems: from chains to planes
M. Mierzejewski, M. Środa, J. Herbrych, and P. Prelovšek
Phys. Rev. B 102, 161111(R) (2020)
& arXiv: cond-mat/2003.00495
(30) ◉
Block orbital-selective Mott insulators: a spin excitation analysis
J. Herbrych, G. Alvarez, A. Moreo, and E. Dagotto
Phys. Rev. B 102, 115134 (2020)
& arXiv: cond-mat/2006.09495
(29) ◉
Prediction of exotic magnetic states in the alkali metal quasi-one-dimensional iron selenide compound Na2FeSe2
B. Pandey, L.-F. Lin, R. Soni, N. Kaushal, J. Herbrych, G. Alvarez, and E. Dagotto
Phys. Rev. B 102, 035149 (2020)
& arXiv: cond-mat/2005.13132
(28) ◉
Block-spiral magnetism: An exotic type of frustrated order
J. Herbrych, J. Heverhagen, G. Alvarez, M. Daghofer, A. Moreo, and E. Dagotto
Proc. Natl. Acad. Sci. USA 117, 16226 (2020)
& arXiv: cond-mat/1911.12248
(27) ◉
Vanishing Wilson ratio as the hallmark of quantum spin-liquid models
P. Prelovšek, K. Morita, T. Tohyama, and J. Herbrych
Phys. Rev. Research 2, 023024 (2020)
& arXiv: cond-mat/1912.00876
(26) ◉
Inelastic neutron scattering study of the anisotropic S=1 spin chain [Ni(HF2)(3-Clpyridine)4]BF4
D. M. Pajerowski, J. L. Manson, J. Herbrych, J. Bendix, A. P. Podlesnyak, J. M. Cain, and M. W. Meisel
Phys. Rev. B 101, 094431 (2020)
& arXiv: cond-mat/2001.08555
(25) ◉
Charge-density-wave melting in the one-dimensional Holstein model
J. Stolpp, J. Herbrych, F. Dorfner, E. Dagotto, and F. Heidrich-Meisner
Phys. Rev. B 101, 035134 (2020)
& arXiv: cond-mat/1911.01718
(24) ◉
Novel magnetic block states in low-dimensional iron-based superconductors
J. Herbrych, J. Heverhagen, N. D. Patel, G. Alvarez, M. Daghofer, A. Moreo, and E. Dagotto
Phys. Rev. Lett. 123, 027203 (2019)
& arXiv: cond-mat/1812.00325
(23) Magnetization and energy dynamics in spin ladders: Evidence of diffusion in time, frequency, position, and momentum
J. Richter, F. Jin, L. Knipschild, J. Herbrych, H. De Raedt, K. Michielsen, J. Gemmer, and R. Steinigeweg
Phys. Rev. B 99, 144422 (2019)
& arXiv: cond-mat/1811.02806
(22) Sudden removal of a static force in a disordered system: Induced dynamics, thermalization, and transport
J. Richter, J. Herbrych, and R. Steinigeweg
Phys. Rev. B 98, 134302 (2018)
& arXiv: cond-mat/1808.00497
(21) Non-equilibrium mass transport in the Fermi-Hubbard model
S. Scherg, T. Kohlert, J. Herbrych, J. Stolpp, P. Bordia, U. Schneider, F. Heidrich-Meisner, I. Bloch, and M. Aidelsburger
Phys. Rev. Lett. 121, 130402 (2018)
& arXiv: cond-mat/1805.10990
(20) Spin dynamics of the block orbital-selective Mott phase
J. Herbrych, N. Kaushal, A. Nocera, G. Alvarez, A. Moreo, and E. Dagotto
Nat. Commun. 9, 3736 (2018)
& arXiv: cond-mat/1804.01959
(19) Density-matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension
N. Kaushal, J. Herbrych, A. Nocera, G. Alvarez, A. Moreo, F. A. Reboredo, and E. Dagotto
Phys. Rev. B 96, 155111 (2017)
& arXiv: cond-mat/1707.04313
(18) Efficiency of fermionic quantum distillation
J. Herbrych, A. E. Feiguin, E. Dagotto, and F. Heidrich-Meisner
Phys. Rev. A 96, 033617 (2017)
& arXiv: cond-mat/1707.01792
(17) Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds
C. B. Bishop, J. Herbrych, E. Dagotto, and A. Moreo
Phys. Rev. B 96, 035144 (2017)
& arXiv: cond-mat/1704.03495
(16) Self-consistent approach to many-body localization and subdiffusion
P. Prelovšek and J. Herbrych
Phys. Rev. B 96, 035130 (2017)
& arXiv: cond-mat/1609.05450
(15) Dynamics of locally coupled oscillators with next-nearest-neighbor interaction
J. Herbrych, A. G. Chazirakis, N. Christakis, and J. J. P. Veerman
Differ. Equ. & Dyn. Syst. 29, 487 (2021)
& arXiv: math/1506.07381
(14) Density correlations and transport in models of many-body localization
P. Prelovšek, M. Mierzejewski, O. Barišić, and J. Herbrych
Ann. Phys. (Berlin) 529, 1600362 (2017)
& arXiv: cond-mat/1611.03611
(13) Interaction-induced weakening of localization in few-particle disordered Heisenberg chains
D. Schmidtke, R. Steinigeweg, J. Herbrych, and J. Gemmer
Phys. Rev. B 95, 134201 (2017)
& arXiv: cond-mat/1607.05664
(12) Effective realization of random magnetic fields in compounds with large single–ion anisotropy
J. Herbrych and J. Kokalj
Phys. Rev. B 95, 125129 (2017)
& arXiv: cond-mat/1606.06013
(11) Universal dynamics of density correlations at the transition to many–body localized state
M. Mierzejewski, J. Herbrych, and P. Prelovšek
Phys. Rev. B 94, 224207 (2016)
& arXiv: cond-mat/1607.04992
(10) Typicality approach to the optical conductivity in thermal and many-body localized phases
R. Steinigeweg, J. Herbrych, F. Pollmann, and W. Brenig
Phys. Rev. B 94, 180401(R) (2016)
& arXiv: cond-mat/1512.08519
(9) Light induced magnetization in a spin S=1 easy-plane antiferromagnetic chain
J. Herbrych and X. Zotos
Phys. Rev. B 93, 134412 (2016)
& arXiv: cond-mat/1505.03004
(8) Heat conductivity of the Heisenberg spin-1/2 ladder: From weak to strong breaking of integrability
R. Steinigeweg, J. Herbrych, X. Zotos, and W. Brenig
Phys. Rev. Lett. 116, 017202 (2016)
& arXiv: cond-mat/1503.03871
(7) Antiferromagnetic order in weakly coupled random spin chains
J. Kokalj, J. Herbrych, A. Zheludev, and P. Prelovšek
Phys. Rev. B 91, 155147 (2015)
& arXiv: cond-mat/1409.1757
(6) Effective S=1/2 description of the S=1 chain with strong easy plane anisotropy
C. Psaroudaki, J. Herbrych, J. Karadamoglou, P. Prelovšek, X. Zotos, and N. Papanicolaou
Phys. Rev. B 89, 224418 (2014)
& arXiv: cond-mat/1404.3064
(5) Local spin relaxation within the random Heisenberg chain
J. Herbrych, J. Kokalj, and P. Prelovšek
Phys. Rev. Lett. 111, 147203 (2013)
& arXiv: cond-mat/1307.0370
(4) Eigenstate thermalization within isolated spin-chain systems
R. Steinigeweg, J. Herbrych, and P. Prelovšek
Phys. Rev. E 87, 012118 (2013)
& arXiv: cond-mat/1208.6143
(3) Spin hydrodynamics in the S=1/2 anisotropic Heisenberg chain
J. Herbrych, R. Steinigeweg, and P. Prelovšek
Phys. Rev. B 86, 115106 (2012)
& arXiv: cond-mat/1206.4248
(2) Coexistence of anomalous and normal diffusion in integrable Mott insulators
R. Steinigeweg, J. Herbrych, P. Prelovšek, and M. Mierzejewski
Phys. Rev. B 85, 214409 (2012)
& arXiv: cond-mat/1201.2844
(1) Finite-temperature Drude weight within the anisotropic Heisenberg chain
J. Herbrych, P. Prelovšek, and X. Zotos
Phys. Rev. B 84, 155125 (2011)
& arXiv: cond-mat/1107.3027